Neural network ÀÌÁø ºÐ·ù½Ã ³×Æ®¿öÅ©¿¡ µû¸¥ ¼º´É °³¼±

   Á¶È¸ 3910   Ãßõ 0    

안녕하세요


tensorflow를 이용해서 NN으로 이진 분류 문제를 풀어 보려고 합니다.

입력데이터는 한 Pixel에 -1,1,0 의 값을 갖는 86X10의 그림입니다.


Full connected layer로 구성 해서 학습 시킬 경우에

(Relu, dropout 적용, Layer 5개)

트레인 셋(45만개)의 정확도는 계속 올라가서 70%까지 상승하나

테스트 셋(15만개)의 정확도가 49% 이상으로 올라가지 않습니다.

학습이 되지 않는다고 봐야될 것 같은데요


이런 경우에 RNN, CNN을 적용 해 보면 테스트 셋의 정확도가 올라갈 수 있을까요?


MNIST 예제의 경우에는 NN으로도 90%정도 정확도가 나오고

CNN으로 하면 정확도가 상승하는데

이런식으로 NN에서 학습이 안되는 경우에도 효과가 있을까요?


아니면 Regularization을 하는게 도움이 될까요?




ªÀº±Û Àϼö·Ï ½ÅÁßÇϰÔ.


QnA
Á¦¸ñPage 1809/5737
2014-05   5288007   Á¤ÀºÁØ1
2015-12   1811268   ¹é¸Þ°¡
2017-12   4286   Àϸ®ÄÉ
2017-12   5116   ¹Ì´ÏTM
2017-12   6247   À¸¶óÂ÷Â÷Â÷
2017-12   4205   ±è°Ç¿ì
2017-12   4959   ³ª¶ó»ç¶û
2017-12   6057   ÀϷиӽºÅ©
2017-12   5945   ¸®Ä«¶ó¹Ù
2017-12   6704   ±èÀ±¼ú
2017-12   6574   À̱âÀ°
2017-12   3769   Á¦°¥±âõ
2017-12   3629   ±è°Ç¿ì
2017-12   3843   ±è°Ç¿ì
2017-12   4004   ±ô¦
2017-12   5546   Win31
2017-12   5463   µ¼ÀÌ
2017-12   5389   À嵿°Ç2014
2017-12   4145   2cpumem
2017-12   4524   ³ª¶ó»ç¶û
2017-12   6211   °¡¶÷ÀÌ´ç1
2017-12   4840   Â÷Æò¼®